Abstract

Let $M$ be a nilmanifold with a fundamental group which is free $2$-step nilpotent on at least 4 generators. We will show that for any nonnegative integer $n$ there exists a self-diffeomorphism $h_n$ of $M$ such that $h_n$ has exactly $n$ fixed points and any self-map $f$ of $M$ which is homotopic to $h_n$ has at least $n$ fixed points. We will also shed some light on the situation for less generators and also for higher nilpotency classes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.