Abstract

AbstractLet p be a prime number, and let F be a free pro-p group of rank two. Consider an automorphism α of F of finite order m, and let FixF(α) = {x ∈ F | α(x) = x} be the subgroup of F consisting of the elements fixed by α. It is known that if m is prime to p and α = idF, then the rank of FixF(α) is infinite. In this paper we show that if m is a finite power pr of p, the rank of FixF(α) is at most 2. We conjecture that if the rank of F is n and the order of a is a power of α, then rank (FixF(α)) ≤ n.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.