Abstract
1. Let X be a Banach space. Then a self-mapping A of X is said to be nonexpansive provided that ‖AX − Ay‖≤‖X − y‖ holds for all x, y ∈ X. The class of nonexpansive mappings includes contraction mappings and is properly contained in the class of all continuous mappings. Keeping in view the fixed point theorems known for contraction mappings (e.g. Banach Contraction Principle) and also for continuous mappings (e.g. those of Brouwer, Schauderand Tychonoff), it seems desirable to obtain fixed point theorems for nonexpansive mappings defined on subsets with conditions weaker than compactness and convexity. Hypotheses of compactness was relaxed byBrowder [2] and Kirk [9] whereas Dotson [3] was able to relax both convexity and compactness by using the notion of so-called star-shaped subsets of a Banach space. On the other hand, Goebel and Zlotkiewicz [5] observed that the same result of Browder [2] canbe extended to mappings with nonexpansive iterates. In [6], Goebel-Kirk-Shimi obtainedfixed point theorems for a new class of mappings which is much wider than those of nonexpansive mappings, and mappings studied by Kannan [8]. More recently, Shimi [12] used the fixed point theorem of Goebel-Kirk-Shimi [6] to discuss results for approximating fixed points in Banach spaces.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.