Abstract

We examine a modification of the Kuramoto model for phase oscillators coupled on a network. Here, two populations of oscillators are considered, each with different network topologies, internal and cross-network couplings and frequencies. Additionally, frustration parameters for the interactions of the cross-network phases are introduced. This may be regarded as a model of competing populations: internal to any one network phase synchronisation is a target state, while externally one or both populations seek to frequency synchronise to a phase in relation to the competitor. We conduct fixed point analyses for two regimes: one, where internal phase synchronisation occurs for each population with the potential for instability in the phase of one population in relation to the other; the second where one part of a population remains fixed in phase in relation to the other population, but where instability may occur within the first population leading to ‘fragmentation’. We compare analytic results to numerical solutions for the system at various critical thresholds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.