Abstract

Tarski proved in 1955 that every complete lattice has the fixed point property. Later, Davis proved the converse that every lattice with the fixed point property is complete. For a chain complete ordered set, there is the well known Abian-Brown fixed point result. As a consequence of the Abian-Brown result, every chain complete ordered set with a smallest element has the fixed point property. In this paper, a new characterization of a complete lattice is given. Also, fixed point theorems are given for decreasing functions where the partially ordered set need not be dense as is the usual case for fixed point results for decreasing functions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.