Abstract
This paper introduces a class of algebras (called the class of regular algebras), in which the algebra of regular trees (unfoldments of monadic program schemes) is an initial algebra. This means that we have for the above-mentioned class “semantics” of monadic program schemes. We show how to treat, in a unified way, such concepts as: monadic and recursive monadic program schemes, regular and context-free languages. On the other hand, the investigation of the properties of regular algebras may be of intrinsic interest, in particular this leads to a very nice generalization of the notion of a polynomial in an algebra. These “new” polynomials, in general, are determined by infinitely long expressions, and existence of such polynomials in the class of regular algebras is closely connected with the property that every finite tuple of algebraic mappings has a least fixed-point which is obtainable as a least upper bound of a denumerable chain of “approximations”.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.