Abstract
The paper gives a proof of the following existence result in best approximation. Let M be a compact, convex, and non-empty subset of a normed space E and let g be a continuous almost affine mapping of M onto M. For each continuous mapping f from M into E there exists a point x in M such that g(x) is a best M- approximation to f(x). The proof uses Bohnenblust and Karlin's extension to normed spaces of Kakutani's Fixed Point Theorem for set-valued mappings on compact, convex, and non-empty subsets of Euclidean n-space.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.