Abstract

The goal of this paper is to promote the use of fixed point strategies in data science by showing that they provide a simplifying and unifying framework to model, analyze, and solve a great variety of problems. They are seen to constitute a natural environment to explain the behavior of advanced convex optimization methods as well as of recent nonlinear methods in data science which are formulated in terms of paradigms that go beyond minimization concepts and involve constructs such as Nash equilibria or monotone inclusions. We review the pertinent tools of fixed point theory and describe the main state-of-the-art algorithms for provably convergent fixed point construction. We also incorporate additional ingredients such as stochasticity, block-implementations, and non-Euclidean metrics, which provide further enhancements. Applications to signal and image processing, machine learning, statistics, neural networks, and inverse problems are discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.