Abstract

To utilize the full performance advantages of staring infrared imaging systems currently under development, it is necessary to compensate for the characteristic fixed pattern noise which is present at the output from these infrared focal planes. Since many of the applications for staring sensor systems require low power dissipation configurations, it is necessary to develop automatic nonuniformity compensation electronics which have much lower power dissipation requirements than conventional digital compensation techniques. This paper discusses the sources of the nonuniformities and describes the typical characteristics of elevated temperature staring arrays. An analysis is given which shows how detector/charge-coupled device electrical coupling techniques strongly influence the compensation implementation, and finally a review of circuit configurations for the compensation function will be given which shows that very low power dissipation circuitry can be developed which meets the performance power dissipation requirements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.