Abstract

In this paper, a two-stage method is introduced to design fixed-order data-driven [Formula: see text] controller for flexible mechanical systems. In the first stage of the proposed method, unknown parameters of anti-resonance filter that is added to the forward path of the control loop of the system to minimize resonant peaks, are calculated using frequency domain data obtained from open-loop system identification tests. In the second stage, a fixed-order data-driven [Formula: see text] controller is calculated by solving an optimization problem under convex [Formula: see text] constraints obtained based on the Nyquist diagram. With the proposed method, lower order controllers that meets the performance constraints of classical model-based [Formula: see text] problems can be synthesized without need of a parametric plant model. The method developed in this study is tested experimentally on a military stabilized platform and its performance is compared with a model-based [Formula: see text] controller design method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.