Abstract

BackgroundComplex regional pain syndrome (CRPS) may occur after trauma, usually to one limb, and is characterized by pain and disturbed blood flow, temperature regulation and motor control. Approximately 25% of cases develop fixed dystonia. Involvement of dysfunctional GABAergic interneurons has been suggested, however the mechanisms that underpin fixed dystonia are still unknown. We hypothesized that dystonia could be the result of aberrant proprioceptive reflex strengths of position, velocity or force feedback.MethodsWe systematically characterized the pattern of dystonia in 85 CRPS-patients with dystonia according to the posture held at each joint of the affected limb. We compared the patterns with a neuromuscular computer model simulating aberrations of proprioceptive reflexes. The computer model consists of an antagonistic muscle pair with explicit contributions of the musculotendinous system and reflex pathways originating from muscle spindles and Golgi tendon organs, with time delays reflective of neural latencies. Three scenarios were simulated with the model: (i) increased reflex sensitivity (increased sensitivity of the agonistic and antagonistic reflex loops); (ii) imbalanced reflex sensitivity (increased sensitivity of the agonistic reflex loop); (iii) imbalanced reflex offset (an offset to the reflex output of the agonistic proprioceptors).ResultsFor the arm, fixed postures were present in 123 arms of 77 patients. The dominant pattern involved flexion of the fingers (116/123), the wrists (41/123) and elbows (38/123). For the leg, fixed postures were present in 114 legs of 77 patients. The dominant pattern was plantar flexion of the toes (55/114 legs), plantar flexion and inversion of the ankle (73/114) and flexion of the knee (55/114).Only the computer simulations of imbalanced reflex sensitivity to muscle force from Golgi tendon organs caused patterns that closely resembled the observed patient characteristics. In parallel experiments using robot manipulators we have shown that patients with dystonia were less able to adapt their force feedback strength.ConclusionsFindings derived from a neuromuscular model suggest that aberrant force feedback regulation from Golgi tendon organs involving an inhibitory interneuron may underpin the typical fixed flexion postures in CRPS patients with dystonia.

Highlights

  • Complex regional pain syndrome (CRPS) may occur after trauma, usually to one limb, and is characterized by pain and disturbed blood flow, temperature regulation and motor control

  • We aimed to fill this critical gap by characterizing the nature of CRPS-related dystonia in 85 patients with CRPS-related dystonia

  • Clinical evaluation Eighty-five patients with arm or leg pain who presented to the Neurology department of the Leiden University Medical Center and were diagnosed with CRPS type I and dystonia in one or more extremities, participated (Table 1)

Read more

Summary

Introduction

Complex regional pain syndrome (CRPS) may occur after trauma, usually to one limb, and is characterized by pain and disturbed blood flow, temperature regulation and motor control. Dystonia is characterized by sustained muscle contractions, frequently causing repetitive twisting movements or abnormal postures [1]. Primary dystonia is associated with disturbances of higher order sensory processing including sensory temporal-spatial discrimination, multisensory integration for example between visual and tactile input, and movement representation [3]. These disturbances have been attributed to dysfunction of basal ganglia cortico-striatal-thalamo-cortical motor circuits [1,4,5,6]. Whereas primary dystonia is typically characterized by prolonged twisting and repetitive movements, peripherally-induced dystonia features abnormal postures (fixed dystonia), the underlying cause of which is unknown [8]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call