Abstract

In this brief, we present and validate an antiwindup (AW) control design suitable to deal with saturated discrete-time linear plants. Following the modern approach to AW design, the proposed synthesis procedure is based on the compensator paradigm in which the AW controller acts on top of a baseline one, tuned to achieve desirable performance in the unsaturated regime. After extending existing ideas for continuous-time plants to their discrete-time counterparts, the design of the AW compensator is carried out with a focus on computational efficiency and optimized performance in practical operating scenarios. The proposed approach allows one to design fixed-dynamics AW compensators for possibly open-loop unstable plants using generalized sector conditions. Then, the synthesis procedure is applied to tune a fixed-dynamics compensator having the structure of a static compensator cascaded with a unit delay to avoid algebraic loops. Finally, the benefits of such AW augmentation are assessed experimentally to counteract windup effects arising in the position control of multirotor unmanned aerial vehicles (UAVs) when pitch limitations are imposed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.