Abstract
The fixed-domain asymptotics of the maximum likelihood estimator is studied in the framework of the Gaussian process approach for data collected as precise observations of a deterministic computer model given by an analytic function. It is shown that the maximum likelihood estimator of the correlation parameter of a Gaussian process does not converge to a finite value and the computational stability strongly depends on the type of the correlation function. In particular, computations are the most unstable for the Gaussian correlation function, which is typically used in the analysis of computer experiments, and significantly less unstable for the stable correlation function ρ ( t ) = e − ∣ t ∣ γ even if γ = 1.9 which is close to 2.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.