Abstract
The study was conducted to examine the effectiveness of 4.0–4.75 mm crushed shells and Sphagnum peat moss as low-cost natural adsorbent filter materials for the removal of cadmium and nickel ions from binary aqueous solutions. The effects of column depth and flow rate on effluent metal breakthrough, metal removal and pH were investigated as a function of throughput volume (TPV). Metal removal efficiencies and adsorption capacities for each of the columns were estimated to identify the better filter material and operational conditions for the treatment of cadmium and nickel. During the column testing, a flow rate of 1.5 mL/min (surface loading of 27.5 cm 3/cm 2 day) and bed depth of 15 cm were found to represent the better operational conditions, where 47.9% and 42.7% cadmium and nickel cumulative removals were obtained under these operational conditions, respectively. The results will be valuable in the development of a mixed-media adsorption system for the treatment of metal-rich wastewaters such as municipal landfill leachate.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.