Abstract

Pomegranate seed powder (PS) was functionalized with polyvinyl alcohol (PVA) and utilized for boron removal from the aqueous system. Results of Brunauer--Emmett--Teller (BET) surface area analysis and Boehm titration indicated notable decrease in total surface area and increase in acidic surface functional groups of PS after PVA modification. Enhanced sorption is indicative of complex formation between diol groups of the pomegranate seed powder--polyvinyl alcohol (PS–PVA) and borate ions. Under column test, the saturated sorption capacity of boron was noted to be dependent on flow rate and bed height. The developed central composite design (CCD) was adequate to elucidate the sorption mechanism. Mathematical modeling of the column data was conducted, and a modified-dose-response model was the most suitable to describe the breakthrough curve and observed to be consistent with CCD analysis. This is further supported by extensive error analyses conducted between the model predicted and experimental data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.