Abstract

In subdivided populations, migration acts together with selection and genetic drift and determines their evolution. Building upon a recently proposed method, which hinges on the emergence of a time scale separation between local and global dynamics, we study the fixation properties of subdivided populations in the presence of balancing selection. The approximation implied by the method is accurate when the effective selection strength is small and the number of subpopulations is large. In particular, it predicts a phase transition between species coexistence and biodiversity loss in the infinite-size limit and, in finite populations, a nonmonotonic dependence of the mean fixation time on the migration rate. In order to investigate the fixation properties of the subdivided population for stronger selection, we introduce an effective coarser description of the dynamics in terms of a voter model with intermediate states, which highlights the basic mechanisms driving the evolutionary process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.