Abstract
Sichuan is a high-incidence area of thunderstorm activity in China. Based on the data of the total lightning location system from 2018 to 2022, the total lightning, cloud-to-ground (CG) lightning, and intracloud (IC) lightning activity regularity for the Sichuan province (SC) and its three climate subregions: Sichuan Basin (SB), Panxi district (PD), and West Sichuan Plateau (WSP) are analyzed, and the influences of different climate and topography conditions on lightning activities are also discussed. The results show that (1) for the whole province, the annual mean value of total lightning is about 850 thousand. The SB has the most lightning occurrences, and the WSP has the largest IC and +CG proportion. The southwest of PD, the north-center of PD, and the southeast of SB are the three high-value centers of lightning density. (2) For SB, the better thermodynamic and moisture conditions account for the most lightning occurrences. For PD, the lightning distribution is attributed to the joint effect of specific meteorological conditions and mountainous topography. For WSP, the convections are weak and shallow, which lead to high IC and +CG proportion. (3) The IC lightning mainly occurs below 12 km, and the IC height is much lower on WSP. The spatial and seasonal variation of IC height corresponds well to the cloud base height (CBH) and cloud top height (CTH). (4) The seasonal lightning frequency distribution in the three regions is similar, but the diurnal variation is quite different. The lightning activity mainly occurs between 1400 and 2200 LT on WSP but shows obvious nocturnal in SB. (5) Most CG intensity concentrates in the range below 50 kA, and IC concentrates in the range below 75 kA.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.