Abstract
This study reports the validity of body fat percentage (BF%) estimates from several commonly employed techniques as compared with a five-component (5C) model criterion. Healthy adults (n 170) were assessed by dual-energy X-ray absorptiometry (DXA), air displacement plethysmography (ADP), multiple bioimpedance techniques and optical scanning. Output was also used to produce a criterion 5C model, multiple variants of three- and four-component models (3C; 4C) and anthropometry-based BF% estimates. Linear regression, Bland-Altman analysis and equivalence testing were performed alongside evaluation of the constant error (CE), total error (TE), se of the estimate (SEE) and coefficient of determination (R2). The major findings were (1) differences between 5C, 4C and 3C models utilising the same body volume (BV) and total body water (TBW) estimates are negligible (CE ≤ 0·2 %; SEE < 0·5 %; TE ≤ 0·5 %; R2 1·00; 95 % limits of agreement (LOA) ≤ 0·9 %); (2) moderate errors from alternate TBW or BV estimates in multi-component models were observed (CE ≤ 1·3 %; SEE ≤ 2·1 %; TE ≤ 2·2 %; R2 ≥ 0·95; 95 % LOA ≤ 4·2 %); (3) small differences between alternate DXA (i.e. tissue v. region) and ADP (i.e. Siri v. Brozek equations) estimates were observed, and both techniques generally performed well (CE < 3·0 %; SEE ≤ 2·3 %; TE ≤ 3·6 %; R2 ≥ 0·88; 95 % LOA ≤ 4·8 %); (4) bioimpedance technologies performed well but exhibited larger individual-level errors (CE < 1·0 %; SEE ≤ 3·1 %; TE ≤ 3·3 %; R2 ≥ 0·94; 95 % LOA ≤ 6·2 %) and (5) anthropometric equations generally performed poorly (CE 0·6- 5·7 %; SEE ≤ 5·1 %; TE ≤ 7·4 %; R2 ≥ 0·67; 95 % LOA ≤ 10·6 %). Collectively, the data presented in this manuscript can aid researchers and clinicians in selecting an appropriate body composition assessment method and understanding the associated errors when compared with a reference multi-component model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.