Abstract

We report a combined scanning tunneling microscopy and density functional theory study on the formation of intricate networks involving a flexible 5-fold carbonitrile–lanthanide (cerium or gadolinium) coordination. By employing linear linkers equipped with terminal carbonitrile functional groups, and by tuning the local rare-earth to molecule stoichiometry, architectures evidencing high spatial complexity become manifested, including disordered islands of pentameric and nonameric supramolecules, a 2D hierarchical short-range orientational disordered network, and a 2D Archimedean snub square tessellation of the surface, which coexists with minority 2D Archimedean elongated triangular tiling motifs. The combination of both the intricate structural features and the unique properties of lanthanide elements prospects great potential in a variety of fields such as magnetism and catalysis. Furthermore, the expression of Archimedean tiling motifs based on 5-fold vertexes suggests a route to the design of self-assembled dodecagonal quasicrystals on surfaces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.