Abstract

The abstract is additional with repect to the paper published in JGCD. Ordinary Earth satellites are usually placed into five categories of special orbits: sun-synchronous orbits, orbits at the critical inclination, frozen orbits, repeating ground track orbits, and geostationary orbits. This paper investigates their counterparts around Mars and examines the basic nature of these orbits, which are of special interest for missions conducted around Mars, including Mars reconnaissance. Mars' gravity field is much more complicated, with relatively smaller J2, compared to Earth's, which makes the behaviors of these Martian orbits different from those of Earth. Analytical formulations and numerical simulations are used to analyze these Martian orbits and compare them with their Earth counterparts. First, mean element theory is employed to describe variations of orbital elements and give the constraint conditions for achieving these special orbits. Then, numerical verifications based on the PSODE algorithm (particle swarm optimization combined with differential evolution) are adopted to provide more accurate conditions for achieving these orbits when considering an Mars gravity field. Using the numerical method can significantly improve the design in the full gravity field, and it is therefore possible to select these usable orbits for Mars that can reduce or eliminate the need for stationkeeping.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.