Abstract

Currently, the power of QTL mapping is mainly dependent on the quality of phenotypic data in a given population, regardless of the statistical method, as the quality of genotypic data is easily guaranteed in the laboratory. Increasing the sample size per line used for phenotyping is a good way to improve the quality of phenotypic data. However, accommodating a large-scale mapping population takes a large area of rice field, which frequently results in high costs and extra environmental noises. To acquire a reasonable small sample size without a penalty in mapping power, we conducted three experiments with a 4-way MAGIC population and measured phenotypes of 5, 10, and 20 plants per RIL. Three traits including heading date, plant height, and tillers per plant were focused. With SNP- and bin-based QTL mapping, 3 major and 3 minor QTLs for heading date with high heritability and 2 major QTLs for plant height with moderate heritability were commonly detected across the three experiments, but no QTL for tillers per plant with low heritability were commonly identified. In addition, bin-based QTL mapping was more powerful than SNP-based mapping and able to rank the genetic effects of parental alleles. Thus, 5 plants per RIL for phenotyping ensure the power of QTL mapping for traits of high or moderate heritability, and bin-based QTL mapping is recommended for multiparent populations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.