Abstract
This paper demonstrates magnetic three-degree-of-freedom (3-DOF) closed-loop position and 2-DOF open-loop orientation control of a mockup magnetic capsule endoscope in fluid with a single permanent magnet positioned by a commercial 6-DOF robotic manipulator, using feedback of only the 3-DOF capsule position measured by a localization system, with application in capsule endoscopy of a fluid-distended stomach. We analyze the kinematics of magnetic manipulation using a single permanent magnet as the end-effector of a serial-link robot manipulator, and we formulate a control method that enables the capsule’s position and direction to be controlled when the robot manipulator is not in a kinematic singularity, and that sacrifices control over the capsule’s direction to maintain control over the capsule’s position when the manipulator enters a singularity. We demonstrate the method’s robustness to a reduced control rate of 25 Hz, reduced localization rates down to 30 Hz, deviation in the applied magnetic field from that expected, and the presence of manipulator singularities. Five-DOF manipulation of an untethered magnetic device has been previously demonstrated by electromagnetic systems only.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.