Abstract
osMost toolpaths of high speed five-axis machining are composed of discrete tool positions and tool orientation vectors. Thus, toolpath smoothing is essential for increasing the machining efficiency and quality. Traditional smoothing methods face the difficulties of synchronization, computational load, feedrate fluctuation and overshoot due to the inefficient procedure of geometric smoothing followed by interpolation. To break these bottlenecks, a novel interpolation method for five-axis toolpaths with kinematic corner smoothing and time synchronization is proposed in this paper. Rather than smoothing the toolpaths geometrically, the translational velocity of tool position and the rotary angular velocity of tool orientation are directly scheduled in the workpiece coordinate system (WCS). Additionally, algorithms of time synchronization and interpolation are proposed to synchronize translation with rotation, and calculate interpolated tool positions and orientations efficiently. Simulation and experimental studies are conducted to validate the effectiveness and feasibility of the proposed method. Compared with a geometric corner smoothing method, the proposed method generates interpolated toolpaths perfectly respecting the geometric and kinematic constraints. Both the tangential and the axial kinematic profiles obtained by the proposed method are smooth and free of jitters at block junctions. Furthermore, the proposed method improves the machined surface quality, and reduces the computational time by over 50 % without solving optimization problems or scheduling recursively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.