Abstract
A flank milling tool positioning method using a barrel cutter is proposed. An offset point is used as the first anchor point. Two rotary angles of the barrel cutter are adjusted to find the optimized tool position with the largest machining strip width. The result tool position calculated using the proposed method is gouge-free because the local interference avoidance method is integrated inside the tool positioning procedure. Error distribution beneath the barrel cutter is well estimated by virtual of the instant envelope curve of the cutter. The envelope curve is discretized into points. The distances between these points and the model surface are the machining errors beneath the cutter. The employment of the envelope curve also largely reduces the computational load of the algorithm. Finally, numerical implementation and simulation are performed to validate the feasibility of the method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.