Abstract

The linear combination of Student’s t random variables (RVs) appears in many statistical applications. Unfortunately, the Student’s t distribution is not closed under convolution, thus, deriving an exact and general distribution for the linear combination of K Student’s t RVs is infeasible, which motivates a fitting/approximation approach. Here, we focus on the scenario where the only constraint is that the number of degrees of freedom of each t − RV is greater than two. Notice that since the odd moments/cumulants of the Student’s t distribution are zero and the even moments/cumulants do not exist when their order is greater than the number of degrees of freedom, it becomes impossible to use conventional approaches based on moments/cumulants of order one or higher than two. To circumvent this issue, herein we propose fitting such a distribution to that of a scaled Student’s t RV by exploiting the second moment together with either the first absolute moment or the characteristic function (CF). For the fitting based on the absolute moment, we depart from the case of the linear combination of K = 2 Student’s t RVs and then generalize to K ≥ 2 through a simple iterative procedure. Meanwhile, the CF-based fitting is direct, but its accuracy (measured in terms of the Bhattacharyya distance metric) depends on the CF parameter configuration, for which we propose a simple but accurate approach. We numerically show that the CF-based fitting usually outperforms the absolute moment-based fitting and that both the scale and number of degrees of freedom of the fitting distribution increase almost linearly with K .

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.