Abstract

Cascades of transcriptional regulation are the common source of the forward drive in all developmental systems. Increases in complexity and specificity of gene expression at successive stages are based on the collaboration of varied combinations of transcription factors already expressed in the cells to turn on new genes, and the logical relationships between the transcription factors acting and becoming newly expressed from stage to stage are best visualized as gene regulatory networks. However, gene regulatory networks used in different developmental contexts underlie processes that actually operate through different sets of rules, which affect the kinetics, synchronicity, and logical properties of individual network nodes. Contrasting early embryonic development in flies and sea urchins with adult mammalian hematopoietic development from stem cells, major differences are seen in transcription factor dosage dependence, the silencing or damping impacts of repression, and the impact of cellular regulatory history on the parts of the genome that are accessible to transcription factor action in a given cell type. These different features not only affect the kinds of models that can illuminate developmental mechanisms in the respective biological systems, but also reflect the evolutionary needs of these biological systems to optimize different aspects of development.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.