Abstract
BackgroundWith the current focus on personalized medicine, patient/subject level inference is often of key interest in translational research. As a result, random effects models (REM) are becoming popular for patient level inference. However, for very large data sets that are characterized by large sample size, it can be difficult to fit REM using commonly available statistical software such as SAS since they require inordinate amounts of computer time and memory allocations beyond what are available preventing model convergence. For example, in a retrospective cohort study of over 800,000 Veterans with type 2 diabetes with longitudinal data over 5 years, fitting REM via generalized linear mixed modeling using currently available standard procedures in SAS (e.g. PROC GLIMMIX) was very difficult and same problems exist in Stata’s gllamm or R’s lme packages. Thus, this study proposes and assesses the performance of a meta regression approach and makes comparison with methods based on sampling of the full data.DataWe use both simulated and real data from a national cohort of Veterans with type 2 diabetes (n=890,394) which was created by linking multiple patient and administrative files resulting in a cohort with longitudinal data collected over 5 years.Methods and resultsThe outcome of interest was mean annual HbA1c measured over a 5 years period. Using this outcome, we compared parameter estimates from the proposed random effects meta regression (REMR) with estimates based on simple random sampling and VISN (Veterans Integrated Service Networks) based stratified sampling of the full data. Our results indicate that REMR provides parameter estimates that are less likely to be biased with tighter confidence intervals when the VISN level estimates are homogenous.ConclusionWhen the interest is to fit REM in repeated measures data with very large sample size, REMR can be used as a good alternative. It leads to reasonable inference for both Gaussian and non-Gaussian responses if parameter estimates are homogeneous across VISNs.
Highlights
With the current focus on personalized medicine, patient/subject level inference is often of key interest in translational research
Our results indicate that random effects meta regression (REMR) provides parameter estimates that are less likely to be biased with tighter confidence intervals when the Veteran Integrated Service Networks (VISNs) level estimates are homogenous
When the interest is to fit random effects models (REM) in repeated measures data with very large sample size, REMR can be used as a good alternative
Summary
With the current focus on personalized medicine, patient/subject level inference is often of key interest in translational research. For very large data sets that are characterized by large sample size, it can be difficult to fit REM using commonly available statistical software such as SAS since they require inordinate amounts of computer time and memory allocations beyond what are available preventing model convergence. In a retrospective cohort study of over 800,000 Veterans with type 2 diabetes with longitudinal data over 5 years, fitting REM via generalized linear mixed modeling using currently available standard procedures in SAS (e.g. PROC GLIMMIX) was very difficult and same problems exist in Stata’s gllamm or R’s lme packages. An example of VLDS with large number of variables as well as units of analysis is an functional magnetic resonance imaging study of neural changes underlying speech-perception training [2] in which whole brain images of 40 patients were taken to make functional inference, resulting in hundreds of time series data clustered within thousands of voxels
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.