Abstract
While log-Gaussian Cox process regression models are useful tools for modeling point patterns, they can be technically difficult to fit and require users to learn/adopt bespoke software. We show that, for suitably formatted data, we can actually fit these models using generalized additive model software, via a simple line of code, demonstrated on R by the popular mgcv package. We are able to do this because a common and computationally efficient way to fit a log-Gaussian Cox process model is to use a basis function expansion to approximate the Gaussian random field, as is provided by a generic bivariate smoother over geographic space. We further show that if basis functions are parameterized appropriately then we can estimate parameters in the spatial covariance function for the latent random field using a generalized additive model. We use simulation to show that this approach leads to model fits of comparable quality to state-of-the-art software, often more quickly. But we see the main advance from this work as lowering the technology barrier to spatial statistics for applied researchers, many of whom are already familiar with generalized additive model software.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.