Abstract

A volume integral equation based fast algorithm using the Fast Fourier Transform of fitting Green’s function (FG-FFT) is proposed in this paper for analysis of electromagnetic scattering from 3D anisotropic dielectric objects. For the anisotropic VIE model, geometric discretization is still implemented by tetrahedron cells and the Schaubert-Wilton-Glisson (SWG) basis functions are also used to represent the electric flux density vectors. Compared with other Fast Fourier Transform based fast methods, using fitting Green’s function technique has higher accuracy and can be applied to a relatively coarse grid, so the Fast Fourier Transform of fitting Green’s function is selected to accelerate anisotropic dielectric model of volume integral equation for solving electromagnetic scattering problems. Besides, the near-field matrix elements in this method are used to construct preconditioner, which has been proved to be effective. At last, several representative numerical experiments proved the validity and efficiency of the proposed method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.