Abstract
We discuss how mixtures of Gamma distributions with mixing probabilities, shape and rate parameters depending on features can be fitted with neural networks. We develop two versions of the EM algorithm for fitting so-called Gamma Mixture Density Networks, which we call the EM network boosting algorithm and the EM forward network algorithm, and we test their implementation together with the choices of hyperparameters. A simulation study shows that our algorithms perform very well on synthetic data sets. We further illustrate the application of the Gamma Mixture Density Network on a real data set of motor insurance claim amounts and conclude that Gamma Mixture Density Networks can improve the fit of the regression model and the predictions of the claim severities used for rate-making compared to classical actuarial techniques.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.