Abstract
Stata users have access to two easy-to-use implementations of Bayesian inference: Stata's native bayesmh command and StataStan, which calls the general Bayesian engine, Stan. We compare these implementations on two important models for education research: the Rasch model and the hierarchical Rasch model. StataStan fits a more general range of models than can be fit by bayesmh and uses a superior sampling algorithm, that is, Hamiltonian Monte Carlo using the no-U-turn sampler. Furthermore, StataStan can run in parallel on multiple CPU cores, regardless of the flavor of Stata. Given these advantages and given that Stan is open source and can be run directly from Stata do-files, we recommend that Stata users interested in Bayesian methods consider using StataStan.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The Stata Journal: Promoting communications on statistics and Stata
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.