Abstract
An approach is presented for analyzing a heterogeneous set of categorical variables assumed to form a limited number of homogeneous subsets. The variables generate a particular set of proximities between the objects in the data matrix, and the objective of the analysis is to represent the objects in lowdimensional Euclidean spaces, where the distances approximate these proximities. A least squares loss function is minimized that involves three major components: a) the partitioning of the heterogeneous variables into homogeneous subsets; b) the optimal quantification of the categories of the variables, and c) the representation of the objects through multiple multidimensional scaling tasks performed simultaneously. An important aspect from an algorithmic point of view is in the use of majorization. The use of the procedure is demonstrated by a typical example of possible application, i.e., the analysis of categorical data obtained in a free-sort task. The results of points of view analysis are contrasted with a standard homogeneity analysis, and the stability is studied through a Jackknife analysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.