Abstract

Gravitational Search Algorithm (GSA) is a recent metaheuristic algorithm inspired by Newton’s law of gravity and law of motion. In this search process, position change is based on the calculation of step size which depends upon a constant namely, Gravitational Constant (G). G is an exponentially decreasing function throughout the search process. Further, in-spite of having different masses, the value of G remains same for each agent, which may cause inappropriate step size of agents for the next move, and thus leads the swarm toward stagnation or sometimes skipping the true optima. To overcome stagnation, we first propose a gravitational constant having different scaling characteristics for different phase of the search process. Secondly, a dynamic behavior is introduced in this proposed gravitational constant which varies according to the fitness of the agents. Due to this behavior, the gravitational constant will be different for every agent based on its fitness and thus will help in controlling the acceleration and step sizes of the agents which further improve exploration and exploitation of the solution search space. The proposed strategy is tested over 23 well-known classical benchmark functions and 11 shifted and biased benchmark functions. Various statistical analyzes and a comparative study with original GSA, Chaos-based GSA (CGSA), Bio-geography Based Optimization (BBO) and DBBO has been carried out.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.