Abstract
Legumes can preferentially select beneficial rhizobial symbionts and sanction ineffective strains that fail to fix nitrogen. Yet paradoxically, rhizobial populations vary from highly beneficial to ineffective in natural and agricultural soils. Classic models of symbiosis focus on the single dimension of symbiont cost-benefit to sympatric hosts, but fail to explain the widespread persistence of ineffective rhizobia. Here, we test a novel framework predicting that spatio-temporal and community dynamics can maintain ineffective strains in rhizobial populations. We used clonal and multistrain inoculations and quantitative culturing to investigate the relative fitness of four focal Bradyrhizobium strains varying from effective to ineffective on Acmispon strigosus. We found that an ineffective Bradyrhizobium strain can be sanctioned by its native A.strigosus host across the host's range, forming fewer and smaller nodules compared to beneficial strains. But the same ineffective Bradyrhizobium strain exhibits a nearly opposite pattern on the broadly sympatric host Acmispon wrangelianus, forming large nodules in both clonal and multistrain inoculations. These data suggest that community-level effects could favour the persistence of ineffective rhizobia and contribute to variation in symbiotic nitrogen fixation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.