Abstract

In China, Fusarium head blight is caused mainly by the Fusarium graminearum species complex (FGSC), which produces trichothecene toxins. The FGSC is divided into three chemotypes: 3-acetyldeoxynivalenol (3-ADON), 15-acetyldeoxynivalenol (15-ADON), and nivalenol (NIV). In order to predict the geographical changes in the distribution of these chemotype populations in major winter wheat-producing areas in China, the biological characteristics of twenty randomly selected isolates from each of the three chemotypes were studied. No significant difference was exhibited in the growth rate of 3-ADON, 15-ADON, and NIV isolates at 15°C. At 20°C and 25°C, the growth rate of 15-ADON isolates was the highest. At 30°C, the growth rate of NIV and 3-ADON isolates was significantly higher than that of 15-ADON isolates. The 15-ADON isolates produced the highest quantities of perithecia and two to three days earlier than the other two populations at each temperature, and released more ascospores at 18°C. The aggressiveness test on wheat seedlings and ears indicated there was no significant difference between the 3-ADON and 15-ADON isolates. However, the aggressiveness of NIV isolates was significantly lower than that of the 3-ADON and 15-ADON isolates. The DON content in grains from heads inoculated with the 3-ADON isolates was higher than the content of 15-ADON and NIV isolates. The results showed that 15-ADON population had the advantage in perithecia formation and ascospore release, and the 3-ADON population produced more DON in wheat grains. We suggested that distribution of these three chemotype populations may be related to these biological characteristics.

Highlights

  • Fusarium head blight (FHB) is a major disease in wheat that is widely distributed in areas with warm and humid climate resulting in yield losses and grain quality decline [1]

  • The mycelial growth rate among the three chemotype populations was not significantly different (P = 0.9872), and there was an interaction between the chemotype and the temperature in the two-factor ANOVA analysis of variance

  • The primary pathogen of FHB in China was identified as F. graminearum until O’Donnell et al [31] used genealogical concordance phylogenetic species recognition (GCPSR) to investigate species limits in F. graminearum

Read more

Summary

Introduction

Fusarium head blight (FHB) is a major disease in wheat that is widely distributed in areas with warm and humid climate resulting in yield losses and grain quality decline [1]. Fitness of three FGSC chemotypes role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.