Abstract

<span lang="EN-US">X-means and k-means are clustering algorithms proposed as a solution for prolonging wireless sensor networks (WSN) lifetime. In general, X-means overcomes k-means limitations such as predetermined number of clusters. The main concept of X-means is to create a network with basic clusters called parents and then generate (</span><em><span lang="EN-US">j</span></em><span lang="EN-US">) number of children clusters by parents splitting. X-means did not provide any criteria for splitting parent’s clusters, nor does it provide a method to determine the acceptable number of children. This article proposes fitness function X-means (FFX-means) as an enhancement of X-means; FFX-means has a new method that determines if the parent clusters are worth splitting or not based on predefined network criteria, and later on it determines the number of children. Furthermore, FFX-means proposes a new cluster-heads selection method, where the cluster-head is selected based on the remaining energy of the node and the intra-cluster distance. The simulation results show that FFX-means extend network lifetime by 11.5% over X-means and 75.34% over k-means. Furthermore, the results show that FFX-means balance the node’s energy consumption, and nearly all nodes depleted their energy within an acceptable range of simulation rounds. </span>

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.