Abstract
BackgroundInsect pest control programs often use periods of insecticide treatment with intermittent breaks, to prevent fixing of mutations conferring insecticide resistance. Such mutations are typically costly in an insecticide-free environment, and their frequency is determined by the balance between insecticide treatment and cost of resistance. Ace, a key gene in neuronal signaling, is a prominent target of many insecticides and across several species, three amino acid replacements (I161V, G265A, and F330Y) provide resistance against several insecticides. Because temperature disturbs neuronal signaling homeostasis, we reasoned that the cost of insecticide resistance could be modulated by ambient temperature.ResultsExperimental evolution of a natural Drosophila simulans population at hot and cold temperature regimes uncovered a surprisingly strong effect of ambient temperature. In the cold temperature regime, the resistance mutations were strongly counter selected (s = − 0.055), but in a hot environment, the fitness costs of resistance mutations were reduced by almost 50% (s = − 0.031). We attribute this unexpected observation to the advantage of the reduced enzymatic activity of resistance mutations in hot environments.ConclusionWe show that fitness costs of insecticide resistance genes are temperature-dependent and suggest that the duration of insecticide-free periods need to be adjusted for different climatic regions to reflect these costs. We suggest that such environment-dependent fitness effects may be more common than previously assumed and pose a major challenge for modeling climate change.
Highlights
Insect pest control programs often use periods of insecticide treatment with intermittent breaks, to prevent fixing of mutations conferring insecticide resistance
With temperature being a major challenge for neuronal signaling homeostasis [12] and AChE serving a central role in neuronal signaling, we reasoned that the fitness consequences of the Ace insecticide resistance alleles may be modulated by ambient temperature
The D. simulans founder population, which is a sample from a natural Portuguese population, has a pronounced haplotype structure at the Ace locus (Fig. 1b)
Summary
Insect pest control programs often use periods of insecticide treatment with intermittent breaks, to prevent fixing of mutations conferring insecticide resistance. Acetylcholinesterase (AChE) is a well-studied insecticide target that is involved in the breakdown of the neurotransmitter acetylcholine It is targeted by organophosphates and carbamates [1], which are widely used all over the world. With temperature being a major challenge for neuronal signaling homeostasis [12] and AChE serving a central role in neuronal signaling, we reasoned that the fitness consequences of the Ace insecticide resistance alleles may be modulated by ambient temperature. We tested this hypothesis by experimental evolution in an insecticide-free environment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.