Abstract

BackgroundInsect pest control programs often use periods of insecticide treatment with intermittent breaks, to prevent fixing of mutations conferring insecticide resistance. Such mutations are typically costly in an insecticide-free environment, and their frequency is determined by the balance between insecticide treatment and cost of resistance. Ace, a key gene in neuronal signaling, is a prominent target of many insecticides and across several species, three amino acid replacements (I161V, G265A, and F330Y) provide resistance against several insecticides. Because temperature disturbs neuronal signaling homeostasis, we reasoned that the cost of insecticide resistance could be modulated by ambient temperature.ResultsExperimental evolution of a natural Drosophila simulans population at hot and cold temperature regimes uncovered a surprisingly strong effect of ambient temperature. In the cold temperature regime, the resistance mutations were strongly counter selected (s = − 0.055), but in a hot environment, the fitness costs of resistance mutations were reduced by almost 50% (s = − 0.031). We attribute this unexpected observation to the advantage of the reduced enzymatic activity of resistance mutations in hot environments.ConclusionWe show that fitness costs of insecticide resistance genes are temperature-dependent and suggest that the duration of insecticide-free periods need to be adjusted for different climatic regions to reflect these costs. We suggest that such environment-dependent fitness effects may be more common than previously assumed and pose a major challenge for modeling climate change.

Highlights

  • Insect pest control programs often use periods of insecticide treatment with intermittent breaks, to prevent fixing of mutations conferring insecticide resistance

  • With temperature being a major challenge for neuronal signaling homeostasis [12] and AChE serving a central role in neuronal signaling, we reasoned that the fitness consequences of the Ace insecticide resistance alleles may be modulated by ambient temperature

  • The D. simulans founder population, which is a sample from a natural Portuguese population, has a pronounced haplotype structure at the Ace locus (Fig. 1b)

Read more

Summary

Introduction

Insect pest control programs often use periods of insecticide treatment with intermittent breaks, to prevent fixing of mutations conferring insecticide resistance. Acetylcholinesterase (AChE) is a well-studied insecticide target that is involved in the breakdown of the neurotransmitter acetylcholine It is targeted by organophosphates and carbamates [1], which are widely used all over the world. With temperature being a major challenge for neuronal signaling homeostasis [12] and AChE serving a central role in neuronal signaling, we reasoned that the fitness consequences of the Ace insecticide resistance alleles may be modulated by ambient temperature. We tested this hypothesis by experimental evolution in an insecticide-free environment.

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call