Abstract

Our study focused on how externally applied single or multiple stressors alter the fitness of early IV instar Anopheles stephensi larvae by inducing various larval stressors such as starvation and sublethal doses (LC10, LC25 and LC50 for 24, 48 and 72h) of various conventional and biorational larvicides. Larval stress specific response was observed in terms of their nutritional (glycogen, sugar, lipid and protein) and biochemical (DNA) status compared with respective control group which were found to be significantly (P<0.05) altered. Nutrition depletion index was found to be concentration dependent depicting maximum reduction at LC50 concentration with all applied larvicides. Significant (P<0.05) reduction in DNA level was observed only with neem oil (10–23%) and Bti (21–23%) treatments. DNA damage was further evidenced by generating RAPD profiles that revealed variations in band intensities along with addition or deletion of few band in stress induced larvae. Overall, our results depicted that An. stephensi larvae may possibly tolerate the induced stress within certain limits by modifying their nutritional and biochemical levels, which may occur at a significant fitness cost.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call