Abstract

Background: Pyrethroid resistance is rapidly expanding in An. gambiae s.l. populations across Sub-Saharan Africa. Yet there is still not enough information on the fitness cost of insecticide resistance . In the present study, the fitness cost of insecticide resistance on Anopheles coluzzii population from the city of Yaoundé was investigated. Methods: A resistant An. coluzzii colony was established from field collected mosquitoes resistant to both DDT and pyrethroid and selected for 12 generations with deltamethrin 0.05%. The Ngousso laboratory susceptible strain was used as control. A total of 100 females of each strain were blood fed and allowed for individual eggs laying, and then different life traits parameters such as fecundity, fertility, larval development time, emergence rate and longevity were measured. The TaqMan assay was used to screen for the presence of the L1014F and L1014S kdr mutations. Results: Field collected mosquitoes from the F0 generation had a mortality rate of 2.05% for DDT, 34.16% for permethrin and 50.23% for deltamethrin. The mortality rate of the F12 generation was 30.48% for deltamethrin, 1.25% for permethrin and 0% for DDT. The number of eggs laid per female was lower in the resistant colony compared to the susceptible (p <0.0001). Insecticide resistant larvae were found with a significantly long larval development time (10.61±0.33 days) compare to susceptible (7.57±0.35 days). The number of emerging females was significantly high in the susceptible group compared to the resistant . The adults lifespan was also significantly high for susceptible (21.73±1.19 days) compared to resistant (14.63±0.68 days). Only the L1014F- kdr allele was detected in resistant population.. Conclusion: The study suggests that pyrethroid resistance is likely associated with a high fitness cost on An.coluzzii populations. The addition of new tools targeting specifically larval stages could improve malaria vectors control and insecticide resistance management.

Highlights

  • Introduction sectionQuery 2: In Line 3 to 5, the sentence “Four insecticide families, organophosphates, organochlorines, carbamates and pyrethroids, are used in public health” needs to be corrected

  • Blood feeding rate In the susceptible colony, 93% of females successfully blood fed (280/300), while only 34% females successfully blood fed in the resistant colony (102/300), revealing a significant difference in blood feeding between the two colonies (χ2= 147.68, df = 1, P

  • Fecundity parameters recorded were significantly higher in the susceptible colony compare to the resistant colony (χ2 = 43.44, df = 1, P = 2.19×10-11) (Table 2)

Read more

Summary

Introduction

Introduction sectionQuery 2: In Line 3 to 5, the sentence “Four insecticide families, organophosphates, organochlorines, carbamates and pyrethroids, are used in public health” needs to be corrected. There is still not enough information on the fitness cost of insecticide resistance. The fitness cost of insecticide resistance on Anopheles coluzzii population from the city of Yaoundé was investigated. Methods: A resistant An. coluzzii colony was established from field collected mosquitoes resistant to both DDT and pyrethroid and selected for 12 generations with deltamethrin 0.05%. Results: Field collected mosquitoes from the F0 generation had a mortality rate of 2.05% for DDT, 34.16% for permethrin and 50.23% for deltamethrin. The mortality rate of the F12 generation was 30.48% for deltamethrin, 1.25% for permethrin and 0% for DDT. The number of eggs laid per female was lower in the resistant colony compared to version 2

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call