Abstract

Motivated by recent understandings in the stochastic natures of gene expression, biochemical signaling, and spontaneous reversible epigenetic switchings, we study a simple deterministic cell population dynamics in which subpopulations grow with different rates and individual cells can bi‐directionally switch between a small number of different epigenetic phenotypes. Two theories in the past, the population dynamics and thermodynamics of master equations, separately defined two important concepts in mathematical terms: the fitness in the former and the (non‐adiabatic) entropy production in the latter. Both of them play important roles in the evolution of the cell population dynamics. The switching sustains the variations among the subpopulation growth, thus sustains continuous natural selection. As a form of Price’s equation, the fitness increases with (i) natural selection through variations and (ii) a positive covariance between the per capita growth and switching, which represents a Lamarchian‐like behavior. A negative covariance balances the natural selection in a fitness steady state ‐‐‐ “the red queen” scenario. At the same time the growth keeps the proportions of subpopulations away from the “intrinsic” switching equilibrium of individual cells, thus leads to a continuous entropy production. A covariance, between the per capita growth rate and the “chemical potential” of subpopulation, counteracts the entropy production. Analytical results are obtained for the limiting cases of growth dominating switching and vice versa.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.