Abstract

The in vitro and in vivo uptake, toxicological analysis and anti-angiogenic theranostic prospect of FITC loaded (FITC-Si) and suramin loaded (Sur-Si) silica nanoparticles are presented. FITC/suramin encapsulated silica nanoparticles (NPs) with an average size of <30 nm were synthesized. The uptake of FITC-Si by human umbilical vein endothelial cells (HuVECs) (in vitro) and by early stage medaka embryos (in vivo) was monitored by fluorescence microscopy. The nanoformulation was found to be biocompatible with both cells and embryos. The cytotoxicity analysis, tubulogenesis and migration assay confirmed the anti-angiogenic potential of Sur-Si NPs in HuVECs. The imaging of medaka embryos exposed to FITC-Si, their survival and hatching rate and biocompatibility post FITC-Si exposure were documented. The in vivo drug delivery mediated anti-angiogenic potential of Sur-Si NPs was assessed by survival and hatching rate analysis along with morphological indicators. At higher concentrations, Sur-Si proved lethal to embryos, whereas at lower concentrations it was rather an efficient anti-angiogenic formulation leading to malformed vasculogenesis and inhibited intersegmental vessel formation in an efficient dose dependent mode. The results indicate the potential application of such nanoformulation in future anti-angiogenic theranostics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call