Abstract
To meet the demand for exascale-level performance from high-performance computing (HPC) interconnects, many system architects are turning to simulation results for accurate and reliable predictions of the performance of prospective technologies. Testing full-scale networks with a variety of benchmarking tools, including synthetic workloads and application traces, can give crucial insight into what ideas are most promising without needing to physically construct a test network.While flexible, however, this approach is extremely compute time intensive. We address this time complexity challenge through the use of large-scale, optimistic parallel simulation that ultimately leads to faster HPC network architecture innovations. In this paper we demonstrate this innovation capability through a real-world network design case study. Specifically, we have simulated and compared four extreme-scale interconnects: Dragonfly, Megafly, Slim Fly, and a new dual-rail-dual-plane variation of the Slim Fly network topology.We present this new variant of Slim Fly, dubbed Fit Fly, to show how interconnect innovation and evaluation---beyond what is possible through analytic methods---can be achieved through parallel simulation. We validate and compare the model with various network designs using the CODES interconnect simulation framework. By running large-scale simulations in a parallel environment, we are able to quickly generate reliable performance results that can help network designers break ground on the next generation of high-performance network designs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.