Abstract

A T-DNA-tagged, embryo-defective Arabidopsis thaliana mutant, fist, was identified and shown to exhibit defects in nuclear positioning and cell division orientation beginning at the four-cell stage of the embryo proper. Cell division orientation was randomised, with each embryo exhibiting a different pattern. Periclinal divisions did not occur after the eight-cell embryo proper stage and fist embryos lacked a histologically distinct protoderm layer. Terminal embryos resembled globular-stage embryos, but were a disorganised mass containing 30–100 cells. Some terminal embryos (5%) developed xylem-like elements in outer surface cells, indicating that the fist mutation affects radial pattern. A soybean β-conglycinin seed storage protein gene promoter, active in wild-type embryos from heart stage to maturity, was also active in terminal fist embryos despite their disorganised globular state. This indicated that some pathways of cellular differentiation in fist embryos proceed independently of both organised division plane orientation and normal morphogenesis. Endosperm morphogenesis in seeds containing terminal fist embryos was arrested at one of three distinct developmental stages and appeared unlinked to fist embryo morphogenesis. The β-conglycinin seed storage protein gene promoter, normally active in cellularised wild-type endosperm, was inactive in fist endosperm, indicating abnormal development of fist endosperm at the biochemical level. These data indicate that the fist mutation, either directly or indirectly, results in defects in cell division orientation during the early stages of Arabidopsis embryo development. Other aspects of the fist phenotype, such as defects in endosperm development and radial pattern formation, may be related to abnormal cell division orientation or may occur as pleiotropic effects of the fist mutation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.