Abstract

Cellular processes rely on proteins with temperature-dependent stability and activity. While thermosensitivity in biological networks is well-explored, the effect of temperature on complex mechanochemical assemblies, like the spindle, is rarely studied. We examined fission yeast spindle dynamics and chromosome segregation from 15⁰C to 40⁰C. Our findings reveal that these parameters follow U-shaped temperature-dependent curves but reach their minima at different temperatures. Specifically, spindle dynamics peak around 35⁰C, whereas chromosome segregation defects are minimized at 25⁰C. This suggests a scenario in which mitotic errors are tolerated to expedite rapid cell cycle progression.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call