Abstract
Human DSS1 associates with BRCA2, a tumour suppressor protein required for efficient recombinational DNA repair, but the biochemical function of DSS1 is not known. Orthologues of DSS1 are found in organisms such as budding yeast and fission yeast that do not have BRCA2-related proteins, indicating that DSS1 has a physiological role independent of BRCA2. The DSS1 orthologue in Saccharomyces cerevisiae has been shown to associate with the 26 S proteasome and, in the present paper, we report that in the distantly related fission yeast Schizosaccharomyces pombe, Dss1 associates with the 19 S RP (regulatory particle) of the 26 S proteasome. A role for S. pombe Dss1 in proteasome function is supported by three lines of evidence. First, overexpression of two components of the 19 S RP, namely Pad1/Rpn11 and Mts3/Rpn12, rescued the temperature-sensitive growth defect of the dss1 mutant. Secondly, the dss1 mutant showed phenotypes indicative of a defect in proteasome function: growth of the dss1 mutant was inhibited by low concentrations of L-canavanine, an amino acid analogue, and cells of the dss1 mutant accumulated high molecular mass poly-ubiquitylated proteins. Thirdly, synthetic growth defects were found when the dss1 mutation was combined with mutations in other proteasome subunit genes. These findings show that DSS1 has an evolutionarily conserved role as a regulator of proteasome function and suggest that DSS1 may provide a link between BRCA2 and ubiquitin-mediated proteolysis in human cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.