Abstract

Telomeres recruit telomerase and differentiate chromosome ends from sites of DNA damage. Although the DNA damage checkpoint PI3-kinases ATM and ATR localize to telomeres and promote telomerase activation, activation of their downstream checkpoint pathway targets is inhibited. Here, we show that the fission yeast telomeric protein Ccq1 is required for telomerase recruitment and inhibition of ATR target activation at telomeres. The loss of Ccq1 results in progressive telomere shortening and persistent ATR-dependent activation of Chk1. Unlike the checkpoint activation that follows loss of telomerase, this checkpoint activation occurs prior to detectable levels of critically short telomeres. When ccq1Delta telomeres do become critically short, activated Chk1 promotes an unusual homologous recombination-based telomere maintenance process. We find that the previously reported meiotic segregation defects of cells lacking Ccq1 stem from its role in telomere maintenance rather than from a role in formation of the meiotic bouquet. These findings demonstrate the existence of a novel telomerase recruitment factor that also serves to suppress local checkpoint activation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.