Abstract

Previously published results of coincidence measurements between incomplete fusion products and fission fragments from the reaction of 140 MeV {sup 16}O with {sup 232}Th have been used to determine the incomplete fusion contributions to the inclusive fission fragment angular distribution. The incomplete fusion contributions have been subtracted from the inclusive angular distribution, leaving the part due to complete fusion. Because the incomplete fusion processes account for 42% of the fission cross section, the maximum angular momentum contributing to complete fusion is reduced to approximately 55{h_bar}. The angular distribution for fission following complete fusion has been compared with calculations made with the saddle point transition state model and with Bond`s scission point model. When proper account is taken of the large reduction in nuclear temperature at the saddle point due to pre-fission neutron evaporation, the saddle point transition state model reproduces the data very well. Proper handling of the incomplete fusion contributions is found to greatly improve the agreement of Bond`s scission point model with the data for this reaction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.