Abstract

The Advanced Fuels Campaign's Fission Accelerated Steady State Testing (FAST) approach at Idaho National Laboratory creates a benchmark for evaluating accelerated irradiation via control rodlets and advanced metal fuel alloys for sodium-cooled fast reactors (SFRs). FAST experiments have been developed to generate prototypic temperature conditions during steady state irradiations of scaled geometric fuel pins. This approach helps to attain higher burn ups at a much faster rate than previous irradiation tests. For this study, the results from profilometry, fission gas release, and metallography of a FAST experiment are presented. Profilometry determined 0 % effective strain in the rodlets. The fission gas release fraction was measured from puncture/collection analysis. Constituent redistribution was observed in two specimens despite the peak fuel temperatures being below the normal ranges in which redistribution is expected. Metallography of the two higher temperature specimens showed typical swelling with the solid pin closing the fuel-cladding gap and the annular specimen having a fully closed annulus. Additionally, metallography indicated no swelling, no redistribution, and a homogenous microstructure for specimens with lower irradiation temperature. Post irradiation examination of FAST rodlets generally showed the expected representative behavior of metallic fuels within SFRs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.