Abstract

A deep analysis of the current-voltage (I-V) characteristics of YBa2Cu3O7 grain boundary Josephson junctions (GBJJs) allows us to go much farther than the usual calculus of the transport parameters. It is possible to construct a structural image of the barrier by an exhaustive and complementary analysis of both transport and electromagnetic parameters obtained from I-V curves. For such an approach, we have chosen the following three representative bicrystalline geometries: 24° [001] asymmetric, 45° [100] asymmetric, and 24° [001] symmetric +45° [100] asymmetric. The dependence of the product ICRN on the junction normal resistance is of the ICRN−1 type pointing to a SNINS model (S denotes superconductor, I denotes insulator, and N denotes normal metal) for all our GBJJs. A satisfactory explanation of the discrepancy of the capacitance of the barrier estimated from Fiske resonance positions and hysteresis in the I-V curves needs of such a model. Moreover an estimation of the length of the normal regions adjacent to the crystallographic barrier can be made. This comparative analysis is presented in order to extract interesting information about the particular transport mechanisms involved in these GBJJs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.