Abstract

Length and depth of fish larvae are part of the fundamental measurements in many marine ecology studies involving early fish life history. Until now, obtaining these measurements has required intensive manual labor and the risk of inter‐ and intra‐observer variability.We developed an open‐source software solution to semi‐automate the measurement process and thereby reduce both time consumption and technical variability. Using contrast‐based edge detection, the software segments images of a fish larva into “larva” and “background.” Length and depth are extracted from the “larva” segmentation while taking curvature of the larva into consideration. The graphical user interface optimizes workflow and ease of usage, thereby reducing time consumption for both training and analysis. The software allows for visual verification of all measurements.A comparison of measurement methods on a set of larva images showed that this software reduces measurement time by 66%–78% relative to commonly used software.Using this software instead of the commonly used manual approach has the potential to save researchers from many hours of monotonous work. No adjustment was necessary for 89% of the images regarding length (70% for depth). Hence, the only workload on most images was the visual inspection. As the visual inspection and manual dimension extraction works in the same way as currently used software, we expect no loss in accuracy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.